Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(12): e2318787121, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38478697

RESUMO

Manipulating exciton dissociation and charge-carrier transfer processes to selectively generate free radicals of more robust photocatalytic oxidation capacity for mineralizing refractory pollutants remains challenging. Herein, we propose a strategy by simultaneously introducing the cyano-group and Na into graphitic carbon nitride (CN) to obtain CN-Cy-Na, which makes the charge-carrier transfer pathways the dominant process and consequently achieves the selective generation of free radicals. Briefly, the cyano-group intensifies the local charge density of CN, offering a potential well to attract the hole of exciton, which accelerates the exciton dissociation. Meanwhile, the separated electron transfers efficiently under the robust built-in electric field induced by the cyano-group and Na, and eventually accumulates in the heptazine ring of CN for the following O2 reduction due to the reinforced electron sink effect caused by Na. As a result, CN-Cy-Na exhibits 4.42 mmol L-1 h-1 productivity with 97.6% selectivity for free radicals and achieves 82.1% total organic carbon removal efficiency in the tetracycline photodegradation within 6 h. Additionally, CN-Cy-Na also shows outstanding photodegradation efficiency of refractory pollutants, including antibiotics, pesticide plastic additives, and dyes. This work presents an innovative approach to manipulating the exciton effect and enhancing charge-carrier mobility within two-dimensional photocatalysts, opening an avenue for precise control of free radical generation.

2.
Br J Educ Psychol ; 94(1): 165-180, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37907362

RESUMO

BACKGROUND: To accurately measure students' science, technology, engineering and mathematics (STEM) career interest, researchers must get inside the 'black box' to understand students' conceptualizations of STEM careers. AIMS: The aim of Study 1 was to explore whether students' conceptualizations of STEM included medical careers. The aim of Study 2 was to explore whether predictors of STEM career interest (e.g., gender and motivation) varied by STEM definition (inclusion/exclusion of medical careers). SAMPLES: In Study 1, the sample was US college students (N = 125) who were mostly White (80%). In Study 2, the sample was US 10th-grade high school students (N = 455) who were mostly Black (79%). METHODS: In Study 1, students completed an online questionnaire. In Study 2, students completed various measures of math achievement, motivation (science and math expectancies of success, interest and importance value) and career interest with an importance. RESULTS: In Study 1, medical careers were less often classified as STEM careers than traditional STEM careers, but more often classified as STEM than non-STEM careers. In Study 2, science importance value was the only motivational predictor of students' STEM+Medicine career interest, and no motivation constructs predicted traditional STEM career interest. Boys expressed greater interest in traditional STEM careers, while girls expressed greater interest in STEM+Medicine careers. CONCLUSIONS: Students' conceptualizations of STEM are not binary. Thus, we recommend researchers are explicit about their definition of STEM with study participants, in their coding and in their publications.


Assuntos
Engenharia , Matemática , Ciência , Tecnologia , Feminino , Humanos , Masculino , Escolha da Profissão , Motivação
3.
Environ Int ; 182: 108353, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38035535

RESUMO

Micro/nanoplastics in the environment can be ingested by organisms and spread throughout the food chain, ultimately posing a threat to human health. However, the risk of continuous oral exposure in mammals remains unresolved. In this study, we utilized a continuous gavage mouse model to investigate the potential intestinal risks associated with oral exposure to polystyrene micro/nanoplastics (PS-MNPs) with environmentally relevant concentrations. The effects of PS-MNPs with different particle sizes on the gut microbiota, intestinal barrier, and intestinal immune function were evaluated. PS-MNPs can accumulate in the intestine after oral exposure and alter the composition of the gut microbiota. Exposure to PS-MNPs significantly reduced the ratio of Firmicutes to Bacteroidetes as well as the number of potentially beneficial bacteria in the gut, while the number of potentially harmful bacteria significantly increased. The short-chain fatty acids metabolized by gut microbiota were significantly changed by PS-MNPs. Exposure to PS-MNPs disrupts the function of the intestinal barrier and leads to inflammation in the intestines. The levels of secretory immunoglobulin A in the intestine and the differentiation of CD4+ and CD8+ T cells in mesenteric lymph nodes were significantly decreased by PS-MNPs. Moreover, the impact of PS-MNPs on mammalian intestinal health is influenced by the exposure duration and particle size, rather than the concentration. It also suggests that nanoplastics may pose more severe environmental risks.


Assuntos
Microbioma Gastrointestinal , Humanos , Camundongos , Animais , Microplásticos , Disbiose , Linfócitos T CD8-Positivos , Inflamação , Poliestirenos/farmacologia , Mamíferos
4.
Int J Mol Sci ; 24(14)2023 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-37511553

RESUMO

As a biological macromolecule, the superantigen staphylococcal enterotoxin C2 (SEC2) is one of the most potent known T-cell activators, and it induces massive cytotoxic granule production. With this property, SEC2 and its mutants are widely regarded as immunomodulating agents for cancer therapy. In a previous study, we constructed an MHC-II-independent mutant of SEC2, named ST-4, which exhibits enhanced immunocyte stimulation and antitumor activity. However, tumor cells have different degrees of sensitivity to SEC2/ST-4. The mechanisms of immune resistance to SEs in cancer cells have not been investigated. Herein, we show that ST-4 could activate more powerful human lymphocyte granule-based cytotoxicity than SEC2. The results of RNA-seq and atomic force microscopy (AFM) analysis showed that, compared with SKOV3 cells, the softer ES-2 cells could escape from SEC2/ST-4-induced cytotoxic T-cell-mediated apoptosis by regulating cell softness through the CDC42/MLC2 pathway. Conversely, after enhancing the stiffness of cancer cells by a nonmuscle myosin-II-specific inhibitor, SEC2/ST-4 exhibited a significant antitumor effect against ES-2 cells by promoting perforin-dependent apoptosis and the S-phase arrest. Taken together, these data suggest that cell stiffness could be a key factor of resistance to SEs in ovarian cancer, and our findings may provide new insight for SE-based tumor immunotherapy.


Assuntos
Antineoplásicos , Enterotoxinas , Humanos , Enterotoxinas/farmacologia , Enterotoxinas/metabolismo , Superantígenos/farmacologia , Antineoplásicos/farmacologia , Linfócitos T , Ativação Linfocitária
5.
Huan Jing Ke Xue ; 44(4): 2384-2394, 2023 Apr 08.
Artigo em Chinês | MEDLINE | ID: mdl-37040987

RESUMO

Asthe most-used pesticides in the agricultural production process, herbicides are mainly applied to protect crops from weeds. However, with the increased global demand for food, the dosage of herbicides is rising annually, and the efficacy of herbicides is getting stronger, which can cause some environmental issues including the accumulation, migration and transformation, and toxic effects of herbicides in agricultural soils. According to the characteristics of herbicide contamination and regional agricultural production, developing green and low-carbon technologies to reduce the ecological risks of herbicides to the soil-crop systems is a current concern in the ecological environment field. In this paper, relevant studies in recent years on herbicide pollution management in agricultural soils were identified and reviewed, the research progress and application cases of remediation technologies for herbicide pollution was analyzed and demonstrated, and future research and development tendency regarding the remediation of herbicides pollution was also prospected. Current remediation technologies for herbicides mainly include bioremediation technologies (e.g., microbial remediation, enzyme remediation, and phytoremediation), adsorption, and immobilization technologies (e.g., biochar-based materials). The bioremediation technologieswere rather mature and had been applied to the herbicide-contaminated soil in fields. Additionally, many successful bioremediation cases have been reported. Moreover, in order to enhance the remediation effect on herbicide pollution in agriculture soils, remediation technologies have been gradually developed from a single model to a coupled model with physical,chemical, and biological technology, which can maximize the synergy of the multi-technology application.


Assuntos
Herbicidas , Poluentes do Solo , Solo , Poluentes do Solo/análise , Agricultura , Biodegradação Ambiental , Tecnologia
6.
Int J Mol Sci ; 23(17)2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36077288

RESUMO

Chlorimuron-ethyl is a widely used herbicide in agriculture. However, uncontrolled chlorimuron-ethyl application causes serious environmental problems. Chlorimuron-ethyl can be effectively degraded by microbes, but the underlying molecular mechanisms are not fully understood. In this study, we identified the possible pathways and key genes involved in chlorimuron-ethyl degradation by the Chenggangzhangella methanolivorans strain CHL1, a Methylocystaceae strain with the ability to degrade sulfonylurea herbicides. Using a metabolomics method, eight intermediate degradation products were identified, and three pathways, including a novel pyrimidine-ring-opening pathway, were found to be involved in chlorimuron-ethyl degradation by strain CHL1. Transcriptome sequencing indicated that three genes (atzF, atzD, and cysJ) are involved in chlorimuron-ethyl degradation by strain CHL1. The gene knock-out and complementation techniques allowed for the functions of the three genes to be identified, and the enzymes involved in the different steps of chlorimuron-ethyl degradation pathways were preliminary predicted. The results reveal a previously unreported pathway and the key genes of chlorimuron-ethyl degradation by strain CHL1, which have implications for attempts to enrich the biodegradation mechanism of sulfonylurea herbicides and to construct engineered bacteria in order to remove sulfonylurea herbicide residues from environmental media.


Assuntos
Herbicidas , Methylocystaceae , Poluentes do Solo , Biodegradação Ambiental , Herbicidas/metabolismo , Methylocystaceae/metabolismo , Pirimidinas/metabolismo , Poluentes do Solo/metabolismo , Compostos de Sulfonilureia/metabolismo
7.
Microbiol Spectr ; 10(4): e0182222, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35861510

RESUMO

Chlorimuron-ethyl is a commonly used sulfonylurea herbicide, and its long-term residues cause serious environmental problems. Biodegradation of chlorimuron-ethyl is effective and feasible, and many degrading strains have been obtained, but still, the genes and enzymes involved in this degradation are often unclear. In this study, whole-genome sequencing was performed on chlorimuron-ethyl-degrading strain, Chenggangzhangella methanolivorans CHL1. The complete genome of strain CHL1 contains one circular chromosome of 5,542,510 bp and a G+C content of 68.17 mol%. Three genes, sulE, pnbA, and gst, were predicted to be involved in the degradation of chlorimuron-ethyl, and this was confirmed by gene knockout and gene complementation experiments. The three genes were cloned and expressed in Escherichia coli BL21 (DE3) to allow for the evaluation of the catalytic activities of the respective enzymes. The glutathione-S-transferase (GST) catalyzes the cleavage of the sulfonylurea bridge of chlorimuron-ethyl, and the esterases, PnbA and SulE, both de-esterify it. This study identifies three key functional genes of strain CHL1 that are involved in the degradation of chlorimuron-ethyl and also provides new approaches by which to construct engineered bacteria for the bioremediation of environments polluted with sulfonylurea herbicides. IMPORTANCE Chlorimuron-ethyl is a commonly used sulfonylurea herbicide, worldwide. However, its residues in soil and water have a potent toxicity toward sensitive crops and other organisms, such as microbes and aquatic algae, and this causes serious problems for the environment. Microbial degradation has been demonstrated to be a feasible and promising strategy by which to eliminate xenobiotics from the environment. Many chlorimuron-ethyl-degrading microorganisms have been reported, but few studies have investigated the genes and enzymes that are involved in the degradation. In this work, two esterase-encoding genes (sulE, pnbA) and a glutathione-S-transferase-encoding gene (gst) responsible for the detoxification of chlorimuron-ethyl by strain Chenggangzhangella methanolivorans CHL1 were identified, then cloned and expressed in Escherichia coli BL21 (DE3). These key chlorimuron-ethyl-degrading enzymes are candidates for the construction of engineered bacteria to degrade this pesticide and enrich the resources for bioremediating environments polluted with sulfonylurea herbicides.


Assuntos
Herbicidas , Poluentes do Solo , Bactérias/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Glutationa , Herbicidas/metabolismo , Methylocystaceae , Pirimidinas , Poluentes do Solo/metabolismo , Compostos de Sulfonilureia , Transferases
8.
Front Microbiol ; 13: 912312, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35814706

RESUMO

Excessive application of the herbicide chlorimuron-ethyl (CE) severely harms subsequent crops and poses severe risks to environmental health. Therefore, methods for efficiently decreasing and eliminating CE residues are urgently needed. Microbial consortia show potential for bioremediation due to their strong metabolic complementarity and synthesis. In this study, a microbial consortium entitled L1 was enriched from soil contaminated with CE by a "top-down" synthetic biology strategy. The consortium could degrade 98.04% of 100 mg L-1 CE within 6 days. We characterized it from the samples at four time points during the degradation process and a sample without degradation activity via metagenome and 16S rDNA sequencing. The results revealed 39 genera in consortium L1, among which Methyloversatilis (34.31%), Starkeya (28.60%), and Pseudoxanthomonas (7.01%) showed relatively high abundances. Temporal succession and the loss of degradability did not alter the diversity and community composition of L1 but changed the community structure. Taxon-functional contribution analysis predicted that glutathione transferase [EC 2.5.1.18], urease [EC 3.5.1.5], and allophanate hydrolase [EC 3.5.1.54] are relevant for the degradation of CE and that Methyloversatilis, Pseudoxanthomonas, Methylopila, Hyphomicrobium, Stenotrophomonas, and Sphingomonas were the main degrading genera. The degradation pathway of CE by L1 may involve cleavage of the CE carbamide bridge to produce 2-amino-4-chloro-6-methoxypyrimidine and ethyl o-sulfonamide benzoate. The results of network analysis indicated close interactions, cross-feeding, and co-metabolic relationships between strains in the consortium, and most of the above six degrading genera were keystone taxa in the network. Additionally, the degradation of CE by L1 required not only "functional bacteria" with degradation capacity but also "auxiliary bacteria" without degradation capacity but that indirectly facilitate/inhibit the degradation process; however, the abundance of "auxiliary bacteria" should be controlled in an appropriate range. These findings improve the understanding of the synergistic effects of degrading bacterial consortia, which will provide insight for isolating degrading bacterial resources and constructing artificial efficient bacterial consortia. Furthermore, our results provide a new route for pollution control and biodegradation of sulfonylurea herbicides.

9.
J Hazard Mater ; 430: 128485, 2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35739668

RESUMO

As a newly emerging hazardous material, airborne nanoplastics are easily inhaled and accumulated in human and animal alveoli. We previously found that polystyrene nanoplastics (PS-NPs) induced apoptosis and inflammation of human alveolar epithelial A549 cells, implying they increase the risk of pulmonary fibrosis. In this study, we investigated whether PS-NPs induce epithelial-to-mesenchymal transition (EMT), the prelude to lung fibrosis, in A549 cells. A549 cells treated with PS-NPs of different sizes and surface charges exhibited increased migration and EMT markers accompanied with up-regulation of reactive oxygen species (ROS) and NADPH oxidase 4 (NOX4), an ROS generator located in the mitochondria and endoplasmic reticulum (ER). Moreover, PS-NPs caused mitochondrial dysfunction as demonstrated by membrane potential changes and impaired cellular energy metabolism. PS-NPs also activated ER stress as indicated by the up-regulated ER stress markers. As expected, smaller PS-NPs with a positive surface charge had stronger effects. Furthermore, the effects of PS-NPs on A549 cells were reversed by NOX4 gene knock-down, which verified the involvement of NOX4. Our results suggest that PS-NPs induce EMT in A549 cells through multiple mechanisms, and NOX4 is a key mediator in this process. Our findings contribute to understanding the toxicological mechanisms of nanoplastics on the respiratory system.


Assuntos
Microplásticos , Fibrose Pulmonar , Células A549 , Animais , Transição Epitelial-Mesenquimal , Humanos , Poliestirenos , Espécies Reativas de Oxigênio/metabolismo
10.
Ying Yong Sheng Tai Xue Bao ; 33(1): 229-238, 2022 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-35224945

RESUMO

In this study, triazine-degrading strain SB5 was isolated and screened from the activated sludge contaminated with atrazine by enrichment culture technology. Based on its morphology and 16S rRNA gene analysis, strain SB5 was initially identified as Paenarthrobacter sp. It contained the atrazine-degrading genes trzN, atzB, and atzC. The addition of glucose, sucrose, sodium citrate, yeast extract and peptone to the culture medium significantly increased the biomass and atrazine degradation efficiency of strain SB5. The addition of (NH4)2SO4 and NH4Cl inhibited the biomass of strain SB5, but did not affect its degradation efficiency for atrazine. The addition of starch did not affect the biomass of strain SB5, but significantly inhibited its degradation for atrazine. Strain SB5 showed good atrazine tolerance and atrazine degradation ability in the temperature range of 4-42 ℃, initial pH of 4-10 and initial concentration of 50-1000 mg·L-1. Using 100 mg·L-1 atrazine as the sole carbon source, the strain SB5 degraded 100% of atrazine within 36 h under the optimal conditions of 37 ℃ and initial pH 8.0. The results of degradation spectrum analysis showed that strain SB5 had a good degradation effect on the six triazine herbicides (simazine, terbuthylazine, propazine, cyanazine, ametryn and prometryn) at an initial concentration of 100 mg·L-1, and the degradation rates were 86.4%, 92%, 98.6%, 95.6%, 100% and 99.2% after 48 h of incubation, respectively. The results demonstrated that SB5 was an efficient and broad-spectrum degradation strain. The strain SB5 further enriched the strain resources for atrazine biodegradation, and its high-efficient and broad-spectrum degradation characteristics for triazine herbicides showed a potential application value in the development of bioremediation technology for the pollution of triazine herbicides.


Assuntos
Atrazina , Herbicidas , Atrazina/análise , Atrazina/metabolismo , Biodegradação Ambiental , Herbicidas/análise , Herbicidas/metabolismo , RNA Ribossômico 16S , Microbiologia do Solo
11.
J Hazard Mater ; 424(Pt B): 127508, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34688005

RESUMO

Nanoplastics can be ingested by organisms and penetrate biological barriers to affect multiple physiological functions. However, few studies have focused on the effects of nanoplastics on the mammalian immune system. We evaluated the effects and underlying mechanism of nanoplastics of varying particle sizes and surface charges on murine splenic lymphocytes. We found that nanoplastics penetrated into splenic lymphocytes and that nanoplastics of a diameter of 50 nm were absorbed more efficiently by the cells. The nanoplastics decreased cell viability, induce cell apoptosis, up-regulated apoptosis-related protein expression, elicited the production of reactive oxygen species, altered mitochondrial membrane potential, and impaired mitochondrial function. Positively charged nanoplastics exerted the strongest toxicity. Negatively charged and uncharged nanoplastics caused oxidative stress and mitochondrial structural damage in lymphocytes, while positively charged nanoplastics induced endogenous apoptosis directly. Moreover, nanoplastics inhibited the expression of activated T cell markers on the T cell surface, while inhibiting the differentiation of CD8+ T cells and the expression of helper T cell cytokines. In terms of the mechanism, a series of key signaling molecules in the pathways of T cell activation and function were markedly down-regulated after exposure to nanoplastics.


Assuntos
Microplásticos , Poliestirenos , Animais , Linfócitos T CD8-Positivos , Camundongos , Tamanho da Partícula , Espécies Reativas de Oxigênio
12.
Elife ; 102021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34783655

RESUMO

Influenza pandemics pose public health threats annually for lacking vaccine that provides cross-protection against novel and emerging influenza viruses. Combining conserved antigens that induce cross-protective antibody responses with epitopes that activate cross-protective T cell responses might be an attractive strategy for developing a universal vaccine. In this study, we constructed a recombinant protein named NMHC that consists of influenza viral conserved epitopes and a superantigen fragment. NMHC promoted the maturation of bone marrow-derived dendritic cells and induced CD4+ T cells to differentiate into Th1, Th2, and Th17 subtypes. Mice vaccinated with NMHC produced high levels of immunoglobulins that cross-bound to HA fragments from six influenza virus subtypes with high antibody titers. Anti-NMHC serum showed potent hemagglutinin inhibition effects to highly divergent group 1 (H1 subtype) and group 2 (H3 subtype) influenza virus strains. Furthermore, purified anti-NMHC antibodies bound to multiple HAs with high affinities. NMHC vaccination effectively protected mice from infection and lung damage when exposed to two subtypes of H1N1 influenza virus. Moreover, NMHC vaccination elicited CD4+ and CD8+ T cell responses that cleared the virus from infected tissues and prevented virus spread. In conclusion, this study provides proof of concept that NMHC vaccination triggers B and T cell immune responses against multiple influenza virus infections. Therefore, NMHC might be a candidate universal broad-spectrum vaccine for the prevention and treatment of multiple influenza viruses.


Assuntos
Vírus da Influenza A/imunologia , Vacinas contra Influenza/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Proteínas Recombinantes/imunologia , Animais , Linfócitos B/imunologia , Proteção Cruzada , Epitopos/imunologia , Feminino , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Imunidade Celular , Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Influenza A/genética , Camundongos Endogâmicos BALB C , Superantígenos/imunologia , Linfócitos T/imunologia
13.
Biomed Pharmacother ; 143: 112204, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34560552

RESUMO

As a member of superantigens, Staphylococcal Enterotoxin C2 (SEC2) can potently activate T cells expressing specific Vß repertoires and has been applied in clinic for tumor immunotherapy in China for more than 20 years. However, excessive activation of T cells by over-stimulation with superantigen are always followed by eliciting regulatory T cells (Tregs) induction and functional immunosuppression, which brings uncertainties to SEC2 application in tumor immunotherapy. In this study, we found that SEC2 could induce CD4+CD25+Foxp3+ Tregs from the murine splenocytes in dose and time related manners. The induced Tregs with high expression of GITR and CTLA-4 and low expression of CD127 were TCR Vß8.2-specific and have character of IL-10 production in a SEC2 dose-depended manner. Importantly, SEC2-induced CD4+ Tregs showed the potent capacity of suppressing proliferation of intact murine splenocytes response to SEC2. Furthermore, by using specific inhibitors or neutralizing antibody, we proved that the signaling pathways of TCR-NFAT/AP-1, IL-2-STAT5, and TGF-ß-Smad3 play crucial roles in Tregs induction by SEC2. These findings will help us better understand the balance of immune stimulation and immunosuppression mediated by SEC2 and provide valuable guidance for SEC2 application in antitumor immunology.


Assuntos
Enterotoxinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Linfócitos T Reguladores/efeitos dos fármacos , Animais , Células Cultivadas , Feminino , Imunofenotipagem , Interleucina-10/metabolismo , Interleucina-2/metabolismo , Camundongos Endogâmicos BALB C , Fatores de Transcrição NFATC/metabolismo , Fenótipo , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Fator de Transcrição STAT5/metabolismo , Proteína Smad3/metabolismo , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Fator de Transcrição AP-1/metabolismo , Fator de Crescimento Transformador beta/metabolismo
14.
Toxicol Appl Pharmacol ; 427: 115656, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34329641

RESUMO

Bacterial superantigens potently activate conventional T-cells to induce massive cytokine production and mediate tumor cell death. To engineer superantigens for immunotherapy against tumors in clinic, we previously generated SAM-1, a staphylococcal enterotoxins C2 (SEC2) mutant, that exhibited significantly reduced toxicity but maintained the superantigen activity in animal models. This present study aimed to investigate whether SAM-1 activates T cells and induces apoptosis in human tumor cells. We found that SAM-1 induced the maturation of dendritic cells (DCs) with upregulating expression of the surface markers CD80, CD86 and HLA-DR, which secreted high levels of IL-12p70 by activating TLR2-NF-κB signaling pathways. SAM-1 could activate human CD4+ subgroup T cells and CD8+ subgroup T cells in the presence of mature dendritic cells (DCs), leading to the productions of cytokines TRAIL, IL-2, IFN-γ and TNF-α. We observed that TRAIL mediated the apoptosis and S-phase and G2/M-phase arrest in HGC-27 tumor cells via binding to upregulated death receptors DR4 and DR5. Using shRNA knockdown in HGC-27 cells or constitutive overexpression in ES2 cells for DR4 and DR5, we demonstrated the vital requirement of DR4 and DR5 in apoptosis of tumor cells in response to TRAIL secreted from SAM-1-activated T cells. Collectively, our results will facilitate better understanding of SAM-1-based immunotherapies for cancer.


Assuntos
Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Enterotoxinas/farmacologia , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/biossíntese , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Células A549 , Animais , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/efeitos dos fármacos , Relação Dose-Resposta a Droga , Enterotoxinas/genética , Células HeLa , Humanos , Células K562 , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/fisiologia
15.
J Immunol ; 205(8): 2066-2076, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32938730

RESUMO

CD8+ T cells can switch between fatty acid catabolism and mitochondrial energy metabolism to sustain expansion and their cytotoxic functions. ST-4 is a TCR-enhanced mutant derived from superantigen staphylococcal enterotoxin C2 (SEC2), which can hyperactivate CD4+ T cells without MHC class II molecules. However, whether ST-4/SEC2 can enhance metabolic reprogramming in CD8+ T cells remains poorly understood. In this study, we found that ST-4, but not SEC2, could induce proliferation of purified CD8+ T cell from BALB/c mice in Vß8.2- and -8.3-specific manners. Results of gas chromatography-mass spectroscopy analysis showed that fatty acid contents in CD8+ T cells were increased after ST-4 stimulation. Flow cytometry and Seahorse analyses showed that ST-4 significantly promoted mitochondrial energy metabolism in CD8+ T cells. We also observed significantly upregulated levels of gene transcripts for fatty acid uptake and synthesis, and significantly increased protein expression levels of fatty acid and mitochondrial metabolic markers of mTOR/PPARγ/SREBP1 and p38-MAPK signaling pathways in ST-4-activated CD8+ T cells. However, blocking mTOR, PPARγ, SREBP1, or p38-MAPK signals with specific inhibitors could significantly relieve the enhanced fatty acid catabolism and mitochondrial capacity induced by ST-4. In addition, blocking these signals inhibited ST-4-stimulated CD8+ T cell proliferation and effector functions. Taken together, our findings demonstrate that ST-4 enhanced fatty acid and mitochondria metabolic reprogramming through mTOR/PPARγ/SREBP and p38-MAPK signaling pathways, which may be important regulatory mechanisms of CD8+ T cell activation. Understanding the effects of ST-4-induced regulatory metabolic networks on CD8+ T cells provide important mechanistic insights to superantigen-based tumor therapy.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Metabolismo Energético , Enterotoxinas , Ácidos Graxos/imunologia , Ativação Linfocitária/efeitos dos fármacos , Mitocôndrias/imunologia , Mutação , Animais , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/imunologia , Enterotoxinas/genética , Enterotoxinas/imunologia , Enterotoxinas/toxicidade , Feminino , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/imunologia , Camundongos , Camundongos Endogâmicos BALB C
16.
Int J Pharm ; 586: 119498, 2020 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-32505575

RESUMO

Solid tumors are intrinsically resistant to immunotherapy because of the major challenges including the immunosuppression and poor penetration of drugs and lymphocytes into solid tumors due to the complicated tumor microenvironment (TME). Our previous study has created a novel superantigen mutant ST-4 to efficiently active the T lymphocytes and alleviate immune suppression. In the present study, to accumulate ST-4 into the TME, we constructed a recombinant protein, ST-4-iRGD, by fusing ST-4 to a tumor-homing peptide, iRGD. We hypothesized that ST-4-iRGD could internalize into the TME through iRGD-mediated tumor targeting and tumor tissue penetrating to activate the regional immunoreaction. The results of in vitro studies showed that ST-4-iRGD achieved improved tumor targeting and cytotoxicity in mouse B16F10 melanoma cells. The iRGD-mediated tumor tissue penetration was further confirmed by imaging and immunofluorescence studies in vivo, wherein higher distribution of ST-4-iRGD was observed in the mouse 4T1 breast tumor model. Moreover, ST-4-iRGD exhibited enhanced anti-solid tumor characteristics and induced improved lymphocyte infiltration in the B16F10 and 4T1 models. In conclusion, using iRGD to facilitate better dissemination of the therapeutic agent ST-4 throughout a solid tumor mass is feasible, and ST-4-iRGD may be a potential candidate for efficient cancer immunotherapy in the future.


Assuntos
Neoplasias da Mama/terapia , Imunoterapia/métodos , Melanoma Experimental/terapia , Oligopeptídeos/administração & dosagem , Superantígenos/administração & dosagem , Animais , Neoplasias da Mama/imunologia , Linhagem Celular Tumoral , Feminino , Melanoma Experimental/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Mutação , Superantígenos/genética , Superantígenos/metabolismo , Linfócitos T/imunologia , Microambiente Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Sleep Breath ; 24(2): 581-590, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31938990

RESUMO

PURPOSE: To develop an automated framework for sleep stage scoring from PSG via a deep neural network. METHODS: An automated deep neural network was proposed by using a multi-model integration strategy with multiple signal channels as input. All of the data were collected from one single medical center from July 2017 to April 2019. Model performance was evaluated by overall classification accuracy, precision, recall, weighted F1 score, and Cohen's Kappa. RESULTS: Two hundred ninety-four sleep studies were included in this study; 122 composed the training dataset, 20 composed the validation dataset, and 152 were used in the testing dataset. The network achieved human-level annotation performance with an average accuracy of 0.8181, weighted F1 score of 0.8150, and Cohen's Kappa of 0.7276. Top-2 accuracy (the proportion of test samples for which the true label is among the two most probable labels given by the model) was significantly improved compared to the overall classification accuracy, with the average being 0.9602. The number of arousals affected the model's performance. CONCLUSION: This research provides a robust and reliable model with the inter-rater agreement nearing that of human experts. Determining the most appropriate evaluation parameters for sleep staging is a direction for future research.


Assuntos
Redes Neurais de Computação , Apneia Obstrutiva do Sono/fisiopatologia , Fases do Sono/fisiologia , Adulto , Idoso , Aprendizado Profundo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Polissonografia , Adulto Jovem
18.
Sci Total Environ ; 694: 133794, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31756791

RESUMO

As a kind of newly emerging pollutant, nanoplastics are easily to be ingested by organisms, and cause severe damage to biological functions because of their small size, high specific surface area, and strong biological penetration. Recently, there are increasing reports of numerous airborne microplastics, including polystyrene (PS), being detected in atmospheric samples, which implies a potential risk to the human respiratory system. In this work, we evaluated the effects of polystyrene nanoparticles of two different sizes (PS-NP25: 25 nm diameter and PS-NP70: 70 nm diameter) on the human alveolar epithelial A549 cell line including internalization, cell viability, cell cycle, apoptosis, and associated gene transcription and protein expression. Results showed that PS-NP25 was internalized more rapidly and efficiently into the cytoplasm of A549 than PS-NP70. PS-NPs significantly affected the cell viability, caused cell cycle S phrase arrest, activated inflammatory gene transcription, and changed the expression of proteins associated with cell cycle and pro-apoptosis. PS-NPs induced significant up-regulation of pro-inflammatory cytokines such as IL-8, NF-κB, and TNF-α, as well as pro-apoptotic proteins such as DR5, caspase-3, caspase-8, caspase-9, and cytochrome c, which revealed that PS-NPs triggered a TNF-α-associated apoptosis pathway. This study suggests that exposure duration, diameter, and concentration are the key factors for evaluating the toxicological effects of PS-NPs on alveolar epithelial cells. More attention must be focused on the risk of nanoplastic-related air pollution and the environmental toxicological effects of nanoplastics on humans and other terrestrial mammals.


Assuntos
Poluentes Ambientais/toxicidade , Nanopartículas/toxicidade , Plásticos/toxicidade , Linhagem Celular , Células Epiteliais , Humanos , Pulmão , Testes de Toxicidade
19.
J Biol Chem ; 293(51): 19771-19784, 2018 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-30352872

RESUMO

SEC2, a major histocompatibility complex class II (MHC II)-dependent T-cell mitogen, binds MHC II and T-cell receptor (TCR) Vßs to induce effective co-stimulating signals for clonal T-cell expansion. We previously characterized a SEC2 mutant with increased recognition of TCR Vßs, ST-4, which could intensify NF-κB signaling transduction, leading to IL-2 production and T-cell activation. In this study, we found that in contrast to SEC2, ST-4 could induce murine CD4+ T-cell proliferation in a Vß8.2- and Vß8.3-specific manner in the absence of MHC II+ antigen-presenting cells (APCs). Furthermore, although IL-2 secretion in response to either SEC2 or ST-4 stimulation was accompanied by up-regulation of protein kinase Cθ (PKCθ), inhibitor of κB (IκB), α and ß IκB kinase (IKKα/ß), IκBα, and NF-κB in mouse splenocytes, only ST-4 could activate CD4+ T cells in the absence of MHC II+ APCs through the PKCθ/NF-κB signaling pathway. The PKCθ inhibitor AEB071 significantly suppressed SEC2/ST-4-induced T-cell proliferation, CD69 and CD25 expression, and IL-2 secretion with or without MHC II+ APCs. Further, SEC2/ST-4-induced changes in PKCθ/NF-κB signaling were significantly relieved by AEB071 in a dose-dependent manner. Using Lck siRNA, we found that Lck controlled SEC2/ST-4-induced phosphorylation of PKCθ. We also demonstrated that the IL-2R/STAT5 pathway is essential for SEC2/ST-4-induced T-cell activation. Collectively, our data demonstrate that an enhanced ST-4-TCR interaction can compensate for lack of MHC II and stimulate MHC II-free CD4+ T-cell proliferation via PKCθ/NF-κB and IL-2R/STAT5 signaling pathways. Compared with SEC2, intensified PKCθ/NF-κB and IL-2R/STAT5 signals induced by ST-4 lead to enhanced T-cell activation. The results of this study will facilitate better understanding of TCR-based immunotherapies for cancer.


Assuntos
Enterotoxinas/genética , Ativação Linfocitária , Mutação , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais , Linfócitos T/imunologia , Animais , Proliferação de Células , Enterotoxinas/metabolismo , Feminino , Regulação da Expressão Gênica/imunologia , Antígenos de Histocompatibilidade Classe II/metabolismo , Interleucina-2/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , NF-kappa B/metabolismo , Fosforilação , Proteína Quinase C-theta/metabolismo , Receptores de Interleucina-2/metabolismo , Fator de Transcrição STAT5/metabolismo , Baço/imunologia , Linfócitos T/citologia
20.
Exp Cell Res ; 370(2): 237-244, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-29940178

RESUMO

As a kind of superantigen, staphylococcal enterotoxin C2 (SEC2) is well known as a powerful immunomodulator. However, most previous studies about SEC2 focus on its T cell activating characters. But the direct effect of SEC2 on antigen-presenting cells (APCs) which are important for the T cell activation is not clearly. In this study, we investigated the effect of SEC2 on murine bone marrow-derived dendritic cells (BMDCs) which are known as the specialized professional APCs. Contrary to its effects on T cells, SEC2 could not induce proliferation or cytotoxicity to BMDCs even in high concentrations. While SEC2 could promote the mature of BMDCs with increased expression of co-stimulatory molecules on cell membrane such as CD80, CD86, and MHC II. The production of pro-inflammatory cytokines such as TNF-α, IFN-γ and IL-6 were also increased in BMDCs treated with SEC2. We also found that SEC2 enhanced the genes expression of pattern recognition receptors including toll-like receptors 2 (TLR2) and TLR4 in BMDCs, and up-regulated the key signal molecule MyD88 in both mRNA and protein levels. In addition, SEC2 also caused IκBα degradating and NFκB p65 translocating from the cytoplasm to the nucleus in BMDCs. The siRNAs for both TLR2 and TLR4, as well as NFκB specific inhibitor BAY 11-7085 could inhibit the co-stimulatory molecules expression and pro-inflammatory cytokines releasing induced by SEC2. Moreover, TLR2/4 specific siRNAs inhibited p65 and MyD88 upregulation induced by SEC2. In summary, all our results indicated that SEC2 could stimulate BMDCs maturation through TLR-NFκB signaling pathways.


Assuntos
Medula Óssea/efeitos dos fármacos , Enterotoxinas/farmacologia , NF-kappa B/efeitos dos fármacos , Receptor 4 Toll-Like/efeitos dos fármacos , Animais , Medula Óssea/metabolismo , Células da Medula Óssea/citologia , Citocinas/metabolismo , Células Dendríticas , Feminino , Ativação Linfocitária/efeitos dos fármacos , Camundongos Endogâmicos BALB C , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...